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Synopsis 

As a part of continuous study, annular extrudate swell phenomena was investigated using a 
finite element method. For a Newtonian fluid, gravitational force and surface tension effects are 
considered. For non-Newtonian fluids, power-law fluid and second-order fluid were considered. 
Some interesting results were found for non-Newtonian fluids. For highly shear thinning fluid, 
thickness was contracted instead of swelling. For second-order fluid, the analysis was confined 
only to weak elastic fluid, Explanations are presented for high Weisenberg number problems. 

INTRODUCTION 

Annular die is used in many industrially important polymer processing 
operations, e.g., for film blowing process, blow molding process, pipe extru- 
sion process, and hollow fiber extrusion process, to name a few. Even though 
it is well known that die swelling is important because it affects the final 
product dimension, the annular extrudate swell did not get much attention 
compared to capillary or planar die swelling phenomena due to its greater 
complexity. It is not easy to do numerical analysis for annular die swelling 
because it has two free surfaces of which positions are not known a Zyriori. 
Recently there were some numerical studies about annular die swelling using a 
finite element method (Seo and Wissler'92). In previous studies,2 only the 
Newtonian fluid problem was studied. However, most of polymeric melts are 
non-Newtonian fluids and their behaviors are much different than a Newtonian 
fluids'. This article is a part of continuous study about the analysis of the 
annular extrudate swell problem and we investigate annular extrudate swell of 
non-Newtonian fluids. Also the effects of gravitational force and surface 
tension are considered here. 

MATHEMATICAL FORMULATION AND A FINITE 
ELEMENT SCHEME 

The mathematical description of the steady fluid motion is assumed to be 
given by the following equations: 

V - v = 0 (continuity equation) (1)  

pv * Vv = pf + div u = - Vp + pf  + V * T (momentum equation) (2) 
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Here the fluid was assumed to be incompressible. In these equations, v 
represents the fluid velocity vector, p the density, f the body force vector per 
unit mass, T deviatoric stress tensor, u total stress tensor ( = - PI + T), and p 
pressure. 

The constitutive equation of a Newtonian fluid is presented as 

T = 2qND (3) 

where D is the rate of strain tensor and 7N is the Newtonian viscosity. For the 
second-order fluid T is expressed as 

T = vA(') + ( v 1  + v2)A(')A(') - ( v  1 /2)A(') (4) 

Here v 1  and v2 are material parameters called the first and second normal 
stress coefficients, and 7 is the viscosity function. The A") and A(') are the 
first and second Rivlin-Ericksen tensors, respectively, defined by 

A("= 2D = VV + (VV)' = L + LT 

where D is the symmetric part of the velocity gradient L (= Vv). 
Substituting (5) into (4) yields the following equation for T :  

T = T(L + L') + (v1/2 + V ~ ) ( L '  + L") + ( v ,  + v 2 ) ~ ~ T  

+ v z ~ T ~  - ( v 1 / 2 ) ( ~  - VL + v . VL') (6) 

In eq. (6) v l ,  v z  and 7 are functions of the strain rate i. and temperature. 
Generally these can be presented as 

Here qo, vl0,  and vz0 are material parameters, b is a constant, To is a 
reference temperature, and n, n,, and nz are power indexes. The temperature 
dependence of v l  and v 2  are not very well known, although they seem to 
depend on temperature weakly (Pipkin and Tanner3). 

The transport of thermal energy in the fluid is described by 

pC,v - VT = S + V * (k - VT) + 7 : D (energy equation) ( 8 )  

where C, is the specific heat, S is the volumetric heat source, and k is the 
thermal conductivity tensor. With the suitable boundary conditions, these four 
equations [eqs. (11, (21, (61, and (811 form the basis of the finite element 
method used in this study. Using the variational statement for these equations 
implicitly included in conjunction with a finite element interpolation for the 
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independent variables v, p ,  and T yields the standard finite element equations. 
Since the finite element scheme used in this study has been fully described 
elsewhere,' we do not repeat lengthy and complicated derivation and only 
mention briefly the main features of this scheme. Basically the finite element 
method code used here is designed for steady state, incompressible, two- 
dimensional (plane or axisymmetric without torsion) fluid problems. It is 
based on the Galerkin discretization procedure, solving simultaneously eqs. 
(11, (21, (61, and (7) in their full nonlinear forms. Quadratic variation was used 
for the velocity and temperature and linear variation was used for pressure. To 
solve nonlinear terms, iteration was done until convergence occurs using the 
Newton-Raphson iteration method or the successive substitution method 
(Seo4). The computer program has been amply tested for correct simulations. 

In a free surface problem, such as the die swelling problem, an additional 
source of nonlinearity is present since the location of the free surface is not 
known a priori. The shape of the free surface is calculated by means of an 
iterative procedure following those of Crochet and Ke~nings .~  The other thing 
to be mentioned is that we can define three different swelling ratios for 
annular jet swelling. Those are inside diameter swelling (Si), outside diameter 
swelling (So), and thickness swelling (S , )  as follows: 

[ RP'"'( z,) - REd(  z,)] Rf 
R p l (  z,) R; 

s. = = I - -  (9) 

Here Rin means the inside radius, Rout the outside radius, z, is far down- 
stream, initial means the initial position before free surface iteration, and final 
means the final position after free surface iteration. These swelling ratios are 
related to each other. If Ri and R: are 1 and k ,  respectively, they can be 
presented as follows: 

S , = ( R i - R f ) / ( l  - k )  - 1  

or 

s, = [(l +So) - (1 - S c ) k ] / ( l  - k )  - I 

The problem sketch is shown in Figure l(a) and its gnd is shown in Figure 
l(b). Far downstream length was varied depending on the problem. In this 
study, we will consider only isothermal fluids. So temperature dependency of 
viscosity is dropped out and energy equation (8), too. 
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Fig. l(a). Annular die swelling problem sketch. 
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Fig. l(b). Finite element grid for a die swelling problem. 

RESULTS AND DISCUSSION 

Annular Extrudate Swell with a Gravitational Force 

The influence of gravitational field in determining the final shape of a 
creeping Newtonian fluid is now considered. Actually in the investigation of 
the influence of gravitational field, the overall length of the jet would be an 
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TABLE I 
Effect of Gravity Force on the Annular Jet Swelling 

0.0 8.6 - 2.62 14.6 
0.1 7.56 -2.14 13.13 
0.3 6.25 - 1.71 10.8 
0.5 5. - 1.32 8.66 
0.7 3.8 - 0.98 6.66 
1 .o 2.21 - 0.5 3.88 

16.34 
15.58 
13.54 
11.13 
8.97 
5.43 

important factor as in extrusion blow molding process, and this has been 
demonstrated by the recent finite element calculations of Fischer et aL6 
However, in the present work, instead of changing far down stream domain, 
the gravitational parameter g was changed, where g is a dimensionless 
constant defined as 2 g c R / V t  (the inverse of Froude number) and g ,  is the 
gravitational acceleration. Then gravitational force would be applied as a body 
force through all the region and it was taken as positive for flow direction. The 
meaning of this parameter g becomes clear if multiplied by Reynolds number 
to produce gcD2V,p/pV$, which is the ratio of gravitational force to viscous 
force. The same problem was solved using a finite difference method by Dutta7 
and this is the same parameter used by Dutta. An 8 X 13 grid was used and 
downstream distance was taken as four to eight times die gap. The dimension- 
less variables used were R ,  = 1, Ri  = k (= 0.5), vavg = 1,  p = 1, and 77 = 1. 
The Reynolds number was taken as 1 instead of very small value to compare 
with Dutta's FDM result. No slip boundary condition was applied at the die 
walls and normal and tangential stresses were assumed to vanish on the free 
surfaces. The axial direction velocity was assumed to have a fully developed 
profile at far upstream. 

Table I demonstrates the influence of gravity in determining the shape of an 
annular jet emerging from a straight die. There are small differences of 
thickness swelling ratio from that of finite difference method result which are 
due to inappropriate free surface iteration of FDM (Seo and Wissler'). The 
ultimate jet shape is determined by two competing influences. One is normal 
stress development and another is the contraction caused by the axial force 
due to gravity force. We can expect that the presence of a gravitational field 
accelerates the fluid, increases the axial velocity, and decreases the transverse 
velocity and reduces the velocity gradient at die lips, which consequently 
tends to relieve the pressure and stress singularities at die lips (Seo4). It 
decreases swelling ratios. At far upstream in the die, the pressure is uniform 
because the flow is assumed a Newtonian fluid having a fully developed axial 
velocity profile and varies linearly with z due to the Poiseuille fluid nature of 
the flow. A s  the exit section is approached, a transverse pressure gradient 
develops and continues to do so until the exit plane is traversed. Beyond the 
exit section, this transverse gradient gradually decays and ultimately the 
pressure across the jet becomes uniform again. This pressure gradient and 
velocity redistribution after die exit causes extrudate swell (Seo and Wissler I). 
The effect of gravitational force is similar to that of pulling force acting on far 
downstream (Seo and Wissler'). 
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Schematic figure of radius of curvature calculation. 

Annular Extrudate Swell with Surface Tension 

Surface tension plays an important role in determining the shape of a free 
surface of Newtonian fluids. For annular jets, we should consider surface 
tension effect on both inner and outer surfaces. This is different from the 
capillary flow problem which has only one free surface. For annular jets, the 
surface tension acts as a normal pressure on the outer surface and as a pulling 
force on the inner surface. 

Numerical simulations incorporating surface tension involve determination 
of the curvature of the surface profiles. One technique, commonly used for 
curvature calculations is that based on spline fitting as has been suggested by 
Daly' and has been used in a modified form by Omodei'o,'l for the planar and 
capillary jet swelling problems. In the present study, a technique similar that 
employed by Reddy and Tanner" is adopted. The method determines the 
radius of curvature, X ,  of the surface profiles by means of purely geometrical 
procedure as shown schematically in Figure 2. Once Xi is evaluated at a point 
i on the free surface, the total curvature l/Hi at the point is given by 

l/Hi = l/Xi + l/(R(zi) . [ l  + (U,/Vi)']l"'') 

where R(xi )  is the local radial position of point i and Ui and 5 are radial and 
axial velocity components, respectively, at point i. On the segment, i + i + 1, 
we apply a uniformly distributed normal surface load per unit area Pi 

S* 
2 Pi = -(l/Hi + l /Hi+l)  
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TABLE I1 
Effect of Surface Tension on the Annular Jet Swelling 

0.0 
0.01 
0.05 
0.1 
0.2 
0.3 

0.0 
0.1 

8.37 
7.68 
5.38 
2.38 

- 3.05 
- 6.8 

1.36 
0.22 

Re = 1 
- 2.37 

2.67 
6.32 

15.96 
37.0 
56.5 

Re = 20 
4.96 
9.88 

14.36 
14.85 
17.08 
20.73 
30.88 
42.9 

7.77 
10.32 

where S is dimensionless surface tension ( = S/pVo)  which measures the ratio 
of surface tension to viscous forces and we make use of previous iteration 
geometry to evaluate the new surface loads. Now, using these values, the 
whole solution procedure is repeated. The process is continued until desired 
convergence is obtained. Downstream length was taken four to eight times the 
die gap. The same boundary conditions were used as before except the 
addition of surface tension on free surfaces. Table I1 summarizes the influence 
of surface tension on the jet swelling. As said before, the surface tension acts 
as a normal pressure on the outer surface and a pulling force on the inner 
surface. This prohibits outer surface from swelling and stimulates the inner 
radius swelling. The inner surface position moves more than the outside 
surface because the same surface tension value was applied on both surfaces 
and the smaller radius of curvature at inside enables a larger pulling force to 
act on the inner surface which pulls in the inner surface more and makes the 
thickness swelling ratio increase with surface tension. Figures 3 and 4 show 
the effect of surface tension on the shape of an annular jet when the Reynolds 
number is 1 and 20, respectively, for different values of the surface tension 

rn s=001n 
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00 0 5  1 0  1 5  20 

2 

Fig. 3. Surface tension effect on the jet shape when Re = 1. 
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Fig. 4. Surface tension effect on the jet shape when Re = 20. 

parameter S. From these figures we can see that when the Reynolds number is 
small surface tension has a considerable effect on jet shape, but when the 
Reynolds number becomes large, its effect decreases since the inertia is the 
major controlling factor for jet swelling. This is similar to Reddy and Tanner's12 
computational result for capillary jet problem. It was also observed that when 
S is small, the shape of the profile converges very rapidly to its final position. 
However, when S is large, the behavior of the free surface needs a longer 
domain to get a converged position at far downstream. Generally the surface 
tension of polymeric fluids or polymer melts is very small and the value of S of 
those are much smaller than used here. So it seems the surface tension does 
not affect seriously polymer melt extrusion. 

Annular Extrudate Swell of Inelastic Fluids 

Before studying viscoelastic fluid behavior, an inelastic non-Newtonian fluid 
swelling problem was considered first. The fluid referred to as "power law" 
fluid was used, which has a simple form of constitutive equation but is 
important in many industrial polymer processing operations. For simple shear- 
ing motion, the viscosity depends on shear rate nonlinearly and is presented as 
[written in eq. (7)] 

where qo is a consistency parameter and n is the flow index. When n = 1, we 
recover a Newtonian fluid behavior and when n < 1, the flow is pseudoplastic 
(or shear thinning) and when n > 1, it is dilatent (or shear thickening). As 
explained by Tanner et al.,I3 stability consideration forbids a negative value of 
n, because the shear stress should not decrease with increasing shear rate. So 
n = 0 represents the lower limit for n. In this case (n  = 01, we have a slug (or 
plug) flow in a die. 
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The computations were done using the same grid that was used for the 
Newtonian fluid case for k = 0.5 (8 X 1 3  mesh). Dimensionless variables used 
were R, = 1, Ri = k (= 0.5), vavg = 1, p = 1.E - 5, and 7 = 1. 

The upstream and downstream length was taken eight times of die gap 
to get a converged shape and exclude die exit disturbances. Nine node 
Lagrangian elements were used. Boundary conditions on the free surfaces and 
solid walls are identical for previous fluids-we assume the normal and 
tangential stress vanish on the free surfaces and the fluid sticks to solid walls. 
One thing that should be mentioned is that the entry boundary condition at far 
upstream is more complex than for Newtonian fluid. The annular velocity 
profiles of a power law fluid is more difficult to obtain as shown in a paper by 
Fredrickson and Bird.I4 It is easy to show that the shear stress component T,, 

has the general form Ar + B / r ;  thus for a fluid with power law index n, we 
should get 

~ , I j l ~  = f ( A r  + B / r )  ( 14) 

This equation can be solved separately for two ranges, i /  I 0 and i, 2 0, to 
obtain solutions that join at some radius A,  where Ah + B/A = 0. A ,  B,  and 
two integration constants can be obtained by specifying the flow rate, no-slip 
conditions at the walls, and continuity of velocity at r = A. However, this 
requires considerable computational work. A s  an alteration, boundary condi- 
tion and flow rate of a Newtonian fluid were applied at far upstream of the die; 
then the fluid will have a non-Newtonian fluid velocity profile marching 
through the fluid path. So it is necessary to use a longer domain than for a 
Newtonian fluid to give enough space to develop a non-Newtonian velocity 
profile. It was observed from numerical result that eight times length of die 
gap was enough for power law fluid case. The viscoelastic fluid needs a longer 
domain than this. 

Dimensional analysis shows without gravity and negligible surface tension, 
the isothermal extrudate swell is a function of power-law index, n, in the 
creeping flow limit. Table I11 presents computed results for this case when 
Re = l . E  - 5. The thickness swells more with increasing n. We can expect 
this easily considering the shearing in a die and the velocity arrangement at 
downstream (Seo and Wissler'). The fluid moves outward more with shear 
thickening fluid. The thickness swell is presented in Figure 5 vs. power law 
index n. From Figure 5 we can see that the thickness swelling ratio increases 

TABLE 111 
Annular Jet Swelliig with Power-Law Index 

1.4 
1.2 
1 .o 
0.8 
0.6 
0.4 
0.3 
0.2 

16.21 
12.22 
8.6 
5.38 
2.73 
0.676 

-0.13 
- 0.755 

-9.164 
- 5.242 
- 2.6 
- 0.28 

0.363 
- 0.218 
- 0.845 
- 1.767 

23.25 
19.19 
14.6 
10.47 
5.813 
1.103 

- 1.103 
- 3.277 
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Fig. 5. Thickness swelling ratio vs. power-law index. 

almost linearly when n is greater than 0.1. Also a linearized approximation 
line is presented in Figure 5. It is presented as 

S, = 0.223n - 0.077 

When n is 1.4, S, reaches as much as 23.25%. So for a shear thickening fluid, 
we can expect a relatively large thickness swelling, although it is still not 
comparable to real polymeric fluid thickness swelling ratio. Overall thickness 
swelling behavior is similar to that of capillary die swelling (Huynh15). How- 
ever, for shear thinning fluid (n < l) the thickness swelling is not so large and 
it agrees with the well known fact that since most polymeric fluid or melts 
have a value of n between 0.4 and 0.6, inelastic behavior of polymeric melt or 
fluid is not the cause of their large extrudate swell. It should be pointed out 
that when the power law index is less than 0.4 in Table I, the thickness 
swelling ratio becomes negative, which means the thickness contracts rather 
than swells. 

Tanner and his co-worker~'~ noted that die swelling for capillary flow 
decreases with decreasing power law index and no swelling occurs when 
power law index has its minimum value, i.e., zero. The more the fluid becomes 
shear thinning (in other words the smaller the n value becomes), the more its 
axial velocity profile becomes flat in the die, but never totally flat because the 
stick boundary condition at the die walls requires zero velocity there. If the 
fluid is totally inviscid, then it is the same as when fluid flowing inside of 
the die slips completely, which yields a plug flow. This case was studied by 
Silliman and Scriven," and, as we expect, admitting perfect slip (a plug flow) 
does not produce any swelling at all. For very small values of n, however, 
shearing is confined to regions near the wall and a large portion of the fluid 
has a higher velocity than the average axial velocity. Hence, the fluid element 
does not deform much after emerging from a die. This can be explained in 
terms of velocity changes after die exit. The axial velocity does not change 
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much after extrusion except near die lips. Fluid elements near die lips are 
under a pulling force, and elements near the fluid center are under compres- 
sion to balance it. But, owing to the almost flat velocity profile in the fluid, the 
compression is distributed evenly across the fluid thickness. Hence, there is 
not large pushing from fluid center. Even though the pushing from the center 
is small, the stretching at die lips would be relatively large compared to 
compression at the center (Seo and Wissler'). This makes the fluid contract 
after extrusion. When n is less than 0.1, it took very long computational time 
to get a converged solution. 

Annular Extrudate Swell of Viscoelastic Fluids 

Needless to say, most polymeric fluids are viscoelastic fluids which is 
believed to be the main cause of large die swelling. When a polymeric melt 
enters into the die from the reservoir or extruder, the constituent molecules 
are entangled. While it passes through the die, its elastic strain energy is 
imparted to the fluid. After it leaves the die, some of the strain energy will be 
recovered and this elastic strain recovery causes a large thickness swelling. 
As presented in eq. (7), it is possible to use parameters dependent on the 

second invariant of the rate of deformation tensor. However, there is a lack of 
data for the parameter's power-law indexes. So instead of it, we would rather 
use constant parameters for 77, vl ,  v2. Upstream length was increased to 
z = - 12 to get a uniform pressure profile across the die gap, since a 
Poiseuille flow was specified at far upstream and the far downstream length 
was increased to z = 6 to get a uniform axial velocity. The boundary condi- 
tions are the same as  the power-law fluid case, where a Newtonian fully 
developed axial velocity profile was also specified at the upstream boundary. 

For the second-order fluid, dimensional analysis provides two dimensionless 
variables 

If we note that vl /q  has the dimension of time, then the second-order fluid 
model is apparently equivalent to Maxwell fluid model as verified by Tanner.I7 
In a simple shearing flow (where the velocity field is given by v = iyy) we can 
define the first normal stress difference Nl by 711 - 722,  equal to v l j 2 ,  and 
the second normal stress difference N2 by 7 2 2  - 733, equal to v2y2. Hence, 
the first normal stress difference Nl is proportional to V , ( V ~ / R , ) ~ ,  and it can 
be seen easily that the dimensionless group vlVo/77Ro is proportional to 

evaluated at the die wall; thus the equivalence of the present 
formulation to those based on recoverable shear (N1/2712)wall can be easily 
understood (Tanner"). The dimensionless number vlVo/77Ro is generally 
called the Weisenberg number, which is a measure of the relative importance 
of elastic effects to viscous effects. The starting dimensionless values of the 
material parameters used in this problem were 77 = 1, v1 = 0.1, and v2 = 

-0.01. The first normal stress difference coefficient v 1  was varied to change 
the Weisenberg number while all other variables were kept fixed. The compu- 
tational result is presented in Table IV for a limited range of Weisenberg 
number (We), which is based on annular die gap (0.5). When the Weisenberg 
number is larger than 0.4, 20 iterations were not enough to get a converged 
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TABLE IV 
Summary of Annular Jet Swelling for a Second-Order Fluid 

0.1 
0.2 
0.3 
0.4 

10.52 - 
12.28 
14.61 
17.78 

0.27 
1.01 
1.77 
1.39 

20.79 
25.57 
30.99 
37.35 

solution. Additional iteration costs a lot of computational time. In the limited 
range of We for which solutions were obtained, we can get a glimpse of the 
elastic effect on annular jet swelling. Table IV shows that increasing We gives 
large thickness swelling, as we would expect. It is reported by others (Chang 
et al.,” Tanner,17 and Murty’’) that when the We increases, thickness swelling 
of a capillary jet decreases first and then increases. This slacking phenomenon 
with increasing We was not found in our result, possibly due to coarse mesh. 

Figures 6(a) and (b) show the axial stress contours for the We = 0 (Newto- 
nian fluid) and We = 0.4 cases. In these figures, due to the magnification of 
radial direction, the annular jet shapes are exaggerated in the radial direction. 
However, we can see clearly the axial stress develops with non-Newtonian 
fluid and very high extensional stresses arise at the die lip with increasing We. 
In our computational results, it was found that the radial stress increased at 
the lips, while the pressure singularity at the lips lost its intensity when We 
increased (Seo4). It is a possible conjecture that these high extensional 
stresses are causing the eventual lack of convergence of the numerical 
procedure.21 Recently a lot of progress has been made to solve the high 
Weisenberg number problem and it was revealed that the traditional Galerkin 

ISOAX 
01 -5.205 
02 - 1 .  992 

04 4.436 
05  7.650 
06 10.864 
07 14.078 
08  17.292 
09 20.506 
10 23.720 

0 3  1 .  2 2 2  

. 
I I 0  1 50 

0 

I S O A X  
01 -3.639 
02. 14.557 
03 32.753 
04 50.949 
0 5  69. 145 
06 87.341 
07 105.537 
08 121. 733 
09 141.929 
10 160. 125 

(b) 
(a) 

Fig. 6. Axial stress fields for (a) Newtonian fluid and (b) second order fluid. 
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TABLE V 
The Effect of the Second Normal Stress Difference Coefficient on Annular 

Die Swelling When v = 0.1 

37 

0.1 
0.2 
0.3 
0.4 
0.5 

10.52 
10.0 
9.5 
9.02 
8.56 

- 0.27 
0.3 
0.82 
1.3 
1.74 

20.79 
20.30 
19.84 
19.35 
18.85 

method cannot overcome the bifurcation point of highly elastic fluid 
(Keunings”). Also second order fluid model was found to be an inappropriate 
constitutive equation to solve high Weisenberg number problem (Luo and 
Tanner23). This is a quite active area and further study is under way. 

From aimensional analysis we have another dimensionless coefficient v B / v  ’. 
The second normal stress difference coefficient is probably an order of 
magnitude smaller than the first normal stress difference coefficient and its 
sign is opposite to the first normal stress difference coefficient (Bird et al.24). 
It is known that the second normal stress difference is responsible for the 
larger pressure at the inner cylinder for axial annulus flow even if the pressure 
difference is not large (Tadmor and GogosZ5). This agrees with the computa- 
tional result presented in Table V. The larger the absolute value of v2, the 
more fluid moves inward and radius swelling increases. Also we can see that 
thickness swelling does not change appreciably even though the absolute 
value of v2/v1 was changed as much as five times. For polymeric fluids, the 
absolute value of v2/v1 is believed to lie between 0.1 and 0.3. So it seems 
that the influence of the second normal stress difference is not so significant 
as that of the first normal stress difference coefficient. This confirms Tanner’s 
assumption’* that the effect of the second normal stress difference on die 
swelling is not large. 

CONCLUSIONS 

In this paper annular die swell was studied. The effect of gravitational force 
was similar to that of pulling force acting on far downstream (Seo and 
Wissler’). Increasing gravity force reduces the compression on the fluid 
center at die exit position and reduces swelling ratios. Surface tension effect 
on annular extrudate swell showed larger inner radius and thickness swelling 
ratios and reduced outer radius swelling ratio. Surface tension effect does not 
seem so important in real polymer processing due to small value. For the 
non-Newtonian fluid constitutive equation, the power-law model and second- 
order fluid model were used. Inelastic viscous fluid (power-law fluid) showed 
increasing swelling ratios with the power-law index. In other words, the shear 
thickening fluid got more swelling, but, as well known, the swelling ratios are 
not so large even for very shear thickening fluid. For the second-order fluid 
case, the converged solution could be found for only the weak elastic fluid and 
the computation met the so-called high Weisenberg number limit. Within a 
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converged solution range, slacking phenomenon with increasing Weisenberg 
number was not observed. To be more useful, numerical analysis should be 
able to overcome this barrier and recent studies illuminate some lights in this 
area. This study will be continued in the future. The influence of the second 
normal stress difference coefficient does not seem to be significant and this 
numerical result supports Tanner’s assumption. 
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